Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.910
Filtrar
1.
Curr Microbiol ; 81(6): 167, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727744

RESUMO

Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.


Assuntos
Clonagem Molecular , Corynebacterium glutamicum , Escherichia coli , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Escherichia coli/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/enzimologia , Diabetes Mellitus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Temperatura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Physiol Plant ; 176(3): e14340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741259

RESUMO

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Assuntos
Arabidopsis , Cisteína , Malato Desidrogenase , NAD , Oxirredução , Plastídeos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Plastídeos/metabolismo , Plastídeos/enzimologia , NAD/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
4.
Int J Food Microbiol ; 417: 110685, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579546

RESUMO

Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antifúngicos , Aspergillus niger , Proteínas Fúngicas , Malato Desidrogenase , Acroleína/farmacologia , Aspergillus niger/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacologia , Trifosfato de Adenosina/metabolismo , Proteômica , Testes de Sensibilidade Microbiana , Ciclo do Ácido Cítrico/efeitos dos fármacos
5.
Plant Cell Environ ; 47(6): 2288-2309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494958

RESUMO

The repeated emergence of NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase (PEPCK) subtypes of C4 photosynthesis are iconic examples of convergent evolution, which suggests that these biochemistries do not randomly assemble, but are instead specific adaptations resulting from unknown evolutionary drivers. Theoretical studies that are based on the classic biochemical understanding have repeatedly proposed light-use efficiency as a possible benefit of the PEPCK subtype. However, quantum yield measurements do not support this idea. We explore this inconsistency here via an analytical model that features explicit descriptions across a seamless gradient between C4 biochemistries to analyse light harvesting and dark photosynthetic metabolism. Our simulations show that the NADP-ME subtype, operated by the most productive crops, is the most efficient. The NAD-ME subtype has lower efficiency, but has greater light harvesting plasticity (the capacity to assimilate CO2 in the broadest combination of light intensity and spectral qualities). In both NADP-ME and NAD-ME backgrounds, increasing PEPCK activity corresponds to greater light harvesting plasticity but likely imposed a reduction in photosynthetic efficiency. We draw the first mechanistic links between light harvesting and C4 subtypes, providing the theoretical basis for future investigation.


Assuntos
Malato Desidrogenase , Fotossíntese , Malato Desidrogenase/metabolismo , Luz , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Modelos Biológicos
6.
Microb Biotechnol ; 17(2): e14410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298109

RESUMO

Although a high titre of malic acid is achieved by filamentous fungi, by-product succinic acid accumulation leads to a low yield of malic acid and is unfavourable for downstream processing. Herein, we conducted a series of metabolic rewiring strategies in a previously constructed Myceliophthora thermophila to successfully improve malate production and abolish succinic acid accumulation. First, a pyruvate carboxylase CgPYC variant with increased activity was obtained using a high-throughput system and introduced to improve malic acid synthesis. Subsequently, shifting metabolic flux to malate synthesis from mitochondrial metabolism by deleing mitochondrial carriers of pyruvate and malate, led to a 53.7% reduction in succinic acid accumulation. The acceleration of importing cytosolic succinic acid into the mitochondria for consumption further decreased succinic acid formation by 53.3%, to 2.12 g/L. Finally, the importer of succinic acid was discovered and used to eliminate by-product accumulation. In total, malic acid production was increased by 26.5%, relative to the start strain JG424, to 85.23 g/L and 89.02 g/L on glucose and Avicel, respectively, in the flasks. In a 5-L fermenter, the titre of malic acid reached 182.7 g/L using glucose and 115.8 g/L using raw corncob, without any by-product accumulation. This study would accelerate the industrial production of biobased malic acid from renewable plant biomass.


Assuntos
Malatos , Sordariales , Ácido Succínico , Ácido Succínico/metabolismo , Malatos/metabolismo , Malato Desidrogenase/metabolismo , Succinatos , Ácido Pirúvico/metabolismo , Glucose/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339168

RESUMO

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Assuntos
Glucose , Malato Desidrogenase , Animais , Humanos , Camundongos , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adenilato Quinase/metabolismo , Dictyostelium/metabolismo , Glucose/metabolismo , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/metabolismo , Mamíferos/metabolismo
8.
J Agric Food Chem ; 72(9): 4788-4800, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377546

RESUMO

The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 µg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.


Assuntos
Citrus , Dactinomicina/análogos & derivados , Xanthomonas , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Citrus/metabolismo , Doenças das Plantas/microbiologia
9.
J Plant Physiol ; 294: 154195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377939

RESUMO

We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.


Assuntos
Fumarato Hidratase , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fumarato Hidratase/genética , Ácidos Tricarboxílicos/metabolismo , Ciclo do Ácido Cítrico , Plantas/genética , Plantas/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Metilação de DNA/genética , Respiração
10.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396625

RESUMO

The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 µmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 µmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752-10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562-5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels.


Assuntos
Antioxidantes , Hiper-Homocisteinemia , Ratos , Masculino , Animais , Catalase/metabolismo , Antioxidantes/farmacologia , Ratos Wistar , Malato Desidrogenase/metabolismo , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/metabolismo , Solução Salina , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Homocisteína/metabolismo , Colo/metabolismo
11.
Nat Commun ; 15(1): 846, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287013

RESUMO

A prevalent side-reaction of succinate dehydrogenase oxidizes malate to enol-oxaloacetate (OAA), a metabolically inactive form of OAA that is a strong inhibitor of succinate dehydrogenase. We purified from cow heart mitochondria an enzyme (OAT1) with OAA tautomerase (OAT) activity that converts enol-OAA to the physiological keto-OAA form, and determined that it belongs to the highly conserved and previously uncharacterized Fumarylacetoacetate_hydrolase_domain-containing protein family. From all three domains of life, heterologously expressed proteins were shown to have strong OAT activity, and ablating the OAT1 homolog caused significant growth defects. In Escherichia coli, expression of succinate dehydrogenase was necessary for OAT1-associated growth defects to occur, and ablating OAT1 caused a significant increase in acetate and other metabolites associated with anaerobic respiration. OAT1 increased the succinate dehydrogenase reaction rate by 35% in in vitro assays with physiological concentrations of both succinate and malate. Our results suggest that OAT1 is a universal metabolite repair enzyme that is required to maximize aerobic respiration efficiency by preventing succinate dehydrogenase inhibition.


Assuntos
Malatos , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Malatos/metabolismo , Ciclo do Ácido Cítrico , Mitocôndrias Cardíacas/metabolismo , Oxaloacetatos/metabolismo , Ácido Oxaloacético/metabolismo , Malato Desidrogenase/metabolismo
12.
New Phytol ; 241(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872738

RESUMO

C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.


Assuntos
Carbono , NADH Desidrogenase , Carbono/metabolismo , NADH Desidrogenase/metabolismo , Zea mays/genética , Zea mays/metabolismo , Malatos/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Proteômica , Fotossíntese , Oxirredução , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/metabolismo
13.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068872

RESUMO

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploide , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Ipomoea/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Cell Metab ; 35(12): 2101-2103, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056428

RESUMO

The malate shuttle is known to maintain the balance of NAD+/NADH between the cytosol and mitochondria. However, in Tex cells, it primarily detoxifies ammonia (via GOT1-mediated production of 2-KG in an atypical reaction) and provides longevity to chronic-infection-induced Tex cells against ammonia-induced cell death.


Assuntos
Amônia , Malatos , Malatos/metabolismo , Amônia/metabolismo , Linfócitos T/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Citosol/metabolismo , NAD/metabolismo , Ácido Aspártico/metabolismo , Malato Desidrogenase/metabolismo
15.
Plant Cell ; 36(1): 194-212, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37804098

RESUMO

In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including ß-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit ß-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , beta-Amilase , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Malato Desidrogenase/metabolismo , beta-Amilase/metabolismo , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Amido/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
16.
Photosynth Res ; 158(1): 57-76, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561272

RESUMO

The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.


Assuntos
Arabidopsis , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos/metabolismo , Peróxido de Hidrogênio/metabolismo , NADP/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Fotossíntese , Estresse Salino , Aminoácidos/metabolismo
17.
Plant Physiol Biochem ; 201: 107814, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321041

RESUMO

Malate dehydrogenase (MDH) as an essential metabolic enzyme is widely involved in plant developmental processes. However, the direct relationship between its structural basis and in vivo roles especially in plant immunity remains elusive. In this study, we found that cytoplasmic cassava (Manihot esculenta, Me) MDH1 was essential for plant disease resistance against cassava bacterial blight (CBB). Further investigation revealed that MeMDH1 positively modulated cassava disease resistance, accompanying the regulation of salicylic acid (SA) accumulation and pathogensis-related protein 1 (MePR1) expression. Notably, the metabolic product of MeMDH1 (malate) also improved disease resistance in cassava, and its application rescued the disease susceptibility and decreased immune responses of MeMDH1-silenced plants, indicating that malate was responsible for MeMDH1-mediated disease resistance. Interestingly, MeMDH1 relied on Cys330 residues to form homodimer, which was directly related with MeMDH1 enzyme activity and the corresponding malate biosynthesis. The crucial role of Cys330 residue in MeMDH1 was further confirmed by in vivo functional comparison between overexpression of MeMDH1 and MeMDH1C330A in cassava disease resistance. Taken together, this study highlights that MeMDH1 confers improved plant disease resistance through protein self-association to promote malate biosynthesis, extending the knowledge of the relationship between its structure and cassava disease resistance.


Assuntos
Manihot , Manihot/metabolismo , Resistência à Doença/fisiologia , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Doenças das Plantas/microbiologia , Verduras
18.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373359

RESUMO

The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression upon irradiation by red light, which was abolished by far-red light. This was accompanied by an increase in promoter methylation of the gene Sdh1-2 encoding the flavoprotein subunit A, while methylation was low for Sdh2-3 encoding the iron-sulfur subunit B under all conditions. The expression of Sdh3-1 and Sdh4 encoding the anchoring subunits C and D was not affected by red light. The expression of Fum1 encoding the mitochondrial form of fumarase was regulated by red and far-red light via methylation of its promoter. Only one gene encoding the mitochondrial NAD-malate dehydrogenase gene (mMdh1) was regulated by red and far-red light, while the second gene (mMdh2) did not respond to irradiation, and neither gene was controlled by promoter methylation. It is concluded that the dicarboxylic branch of the tricarboxylic acid cycle is regulated by light via the phytochrome mechanism, and promoter methylation is involved with the flavoprotein subunit of succinate dehydrogenase and the mitochondrial fumarase.


Assuntos
Fumarato Hidratase , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fumarato Hidratase/genética , Metilação , Zea mays/genética , Zea mays/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(23): e2217869120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253016

RESUMO

T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene MYC has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a CD4-Cre; Myc flox/+transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of Me2 in Myc transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.


Assuntos
Glutamina , Malato Desidrogenase , Linfócitos T , Animais , Camundongos , Glutamina/metabolismo , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfócitos T/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo
20.
Microbiol Spectr ; 11(3): e0016823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036365

RESUMO

The emergence of drug-resistant variants of malaria-causing Plasmodium parasites is a life-threatening problem worldwide. Investigation of the physiological function of individual parasite proteins is a prerequisite for a deeper understanding of the metabolic pathways required for parasite survival and therefore a requirement for the development of novel antimalarials. A Plasmodium membrane protein, malate-quinone oxidoreductase (MQO), is thought to contribute to the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) and is an antimalarial drug target. However, there is little information on its expression and function. Here, we investigated the function of Plasmodium falciparum MQO (PfMQO) in mitochondria using a yeast heterologous expression system. Using a yeast deletion mutant of mitochondrial malate dehydrogenase (MDH1), which is expected to be functionally similar to MQO, as a background strain, we successfully constructed PfMQO-expressing yeast. We confirmed that expression of PfMQO complemented the growth defect of the MDH1 deletion, indicating that PfMQO can adopt the metabolic role of MDH1 in energy transduction for growth in the recombinant yeast. Analysis of cell fractions confirmed that PfMQO was expressed and enriched in yeast mitochondria. By measuring MQO activity, we also confirmed that PfMQO expressed in yeast mitochondria was active. Measurement of oxygen consumption rates showed that mitochondrial respiration was driven by the TCA cycle through PfMQO. In addition, we found that MQO activity was enhanced when intact mitochondria were sonicated, indicating that the malate binding site of PfMQO is located facing the mitochondrial matrix. IMPORTANCE We constructed a model organism to study the physiological role and function of P. falciparum malate-quinone oxidoreductase (PfMQO) in a yeast expression system. PfMQO is actively expressed in yeast mitochondria and functions in place of yeast mitochondrial malate dehydrogenase, which catalyzes the oxidation of malate to oxaloacetate in the TCA cycle. The catalytic site for the oxidation of malate in PfMQO, which is a membrane-bound protein, faces into the mitochondrial matrix, not the mitochondrial inner membrane space. Our findings clearly show that PfMQO is a TCA cycle enzyme and is coupled with the ETC via ubiquinone reduction.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Plasmodium , Animais , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Parasitos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Malatos/metabolismo , Malária Falciparum/parasitologia , Proteínas de Membrana , Quinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA